A VERY SIMPLE ONE-POT SYNTHESIS OF 2-CHLOROPHOSPHININES

Pascal LE FLOCH and François MATHEY

Laboratoire de Chimie du Phosphore et des Métaux de Transition - DCPH -Ecole Polytechnique , 91128 PALAISEAU Cédex (France)

<u>Summary</u>: 2-Chlorophosphinines are obtained by reaction of dichloromethyldichlorophosphine with conjugated dienes and triethylamine at <u>ca</u> 80°C.

Although they are now known since a long time, the study of phosphinines is still hampered by two synthetic problems . Indeed, on one side, the access to weakly substituted phosphinines remains difficult. For example, the only route to parent phosphinine is the original multistep method of Ashe ¹ with its low overall yield. On the other hand, only a limited number of functional phosphinines has been reported in the literature until now 2^{-8} and no easy and general access to these species is known. We wish to describe hereafter a new and very simple one-pot synthesis of the still unknown 2-chlorophosphinines which may partly solve these two synthetic problems.

Our starting point was an observation made by russian chemists 9 who stated that triethylamine was able to dehydrochlorinate dichloromethyldichlorophosphine (1) to give a transient trichlorophosphaalkene (2) which spontaneously dimerizes :

$$c1_2P - cHc1_2 \xrightarrow{Et_3N} [c1P = cc1_2] \xrightarrow{C1 - P} c1 - P \xrightarrow{cc1_2} P - c1$$

$$\underline{1} \qquad \underline{2}$$

Since it is well known that chlorine substitution stabilizes phosphaalkenes 10, we suspected that the half-life of 2 would be long enough so that reactive conjugated dienes could trap it via a [4+2] cycloaddition. Hence, we decided to perform this dehydrochlorination in the presence of a series of 1,3-dienes. In so doing, we discovered not only that it was indeed possible to trap the P=C double bond, but, also, that triethylamine was able to aromatize the resulting [4+2] cycloadducts : $R = R = \frac{R}{R} = \frac{R$

The synthesis of 2-chlorophosphinine is described hereafter as an example : Dichlorophosphine $\underline{1}(10g, 5.38 \times 10^{-2} \text{ mol})$, Et₃N (32.5g, 3.22 $\times 10^{-1} \text{ mol})$, butadiene (14.5g, 2.69 $\times 10^{-1} \text{ mol})$ and 50 mL of dry benzene were heated 5h at 80°C in a pressure vessel. After cooling, 200 mL of pentane were added; after filtration and evaporation of the solvent, the organic residue was distilled (60°C, 10^{-1} mm Hg). Yield 2.31g (33%) of 2-chlorophosphinine ($\underline{4}$)¹¹. A similar experiment with 2,3-dimethylbutadiene gave 35% of 4,5-dimethyl-2-chlorophosphinine ($\underline{5}$)¹². With a smaller excess of Et₂N at 70°C, a peak at +70.8 ppm was observed in the ³¹P NMR spectrum of the crude reaction mixture, probably corresponding to the initial [4+2] cycloadduct 3. Both phosphinines were fully analyzed as their P-W(CO)₂ complexes <u>6</u> from <u>4</u>, and <u>7</u> from <u>5</u>, obtained by reaction with W(CO)₂(MeCN) in THF at 60°C for 1h in respectively 75 and 88% yields. The extreme simplicity of this synthesis of 2-chlorophosphinines will allow us to investigate in some depth their chemistry.

References and Notes

- A.J. Ashe III, J. Am. Chem. Soc., <u>93</u>, 3293 (1971)
 G. Märkl, G. Adolin, F. Kees, G. Zander, Tetrahedron Lett., 3445 (1977)
 G. Märkl, K. Hock, Tetrahedron Lett. <u>24</u>, 2645 (1983) ; <u>24</u>, 5055 (1983)
 G. Märkl, K. Hock, Tetrahedron Lett. <u>24</u>, 5051 (1983)
 P. Pellon, Y.Y.C. Yeung Lam Ko, P. Cosquer, J. Hamelin, R. Carrié, Tetrahedron Lett. <u>27</u>, 4299 (1986)
- 6 . P. Pellon, J. Hamelin, Tetrahedron Lett. 27, 5611 (1986)
- 7 . K. Dimroth, H. Kaletsch, Chem. Ber., 120, 1245 (1987)
- 8 . G. Märkl, G. Dorfmeister, Tetrahedron Lett., 28, 1093 (1987)
- 9. A.A. Prishchenko, I.F. Lutsenko, Zh. Obshch. Khim, <u>51</u>, 2630 (1981)
- 10. R. Appel, A. Westerhaus, Angew. Chem., Int. Ed. Engl., 19, 556 (1980); Tetrahedron Lett. 2159 (1981)
- 11. $\frac{4}{2}$: ³¹P NMR (CDCl₃): δ 200.7 ppm; ¹H NMR (CDCl₃): δ 7.5 (m, ³J(H₄-H₃)=³J(H₄-H₅)=7.8 Hz, ${}^{4}J(H_4-P)=3.9$ Hz, ${}^{4}J(H_4-H_6)=1.7$ Hz, 1H, H₄), 7.75 (q, ${}^{3}J(H_5-H_6)=8$ Hz, ${}^{3}J(H_5-H_4)=7.8$ Hz, ${}^{3}J(H_{5}-P)$ not measured, ${}^{4}J(H_{5}-H_{3})=1.4$ Hz, 1H, H₅), 7.9 (dd, ${}^{3}J(H_{3}-H_{4})=7.8$ Hz, ${}^{3}J(H_{3}-P)=$ 3.3 Hz, ${}^{4}J(H_{3}-H_{5})=1.4$ Hz, 1H, H_{3}), 8.7 (dd, ${}^{2}J(H_{6}-P)=40.3$ Hz, ${}^{3}J(H_{6}-H_{5})=8$ Hz, ${}^{4}J(H_{6}-H_{4})=1.7$ Hz, 1H, H_{6}); ${}^{13}C$ NMR (CDCl₃): δ 131.3 (d, ${}^{2}J(C-P)=26.7$ Hz, C_{3} or C_{5}), 131.6 (d, 2 J(C-P)=25.3 Hz, C₅ or C₃), 135.6 (d, 3 J(C-P)=12.2 Hz, C₄), 156.3 (d, 1 J(C-P)=54.5 Hz, C₆), 164.9 (d, ${}^{1}J(\vec{C}-P)=59.7$ Hz, C₂) ppm. <u>6</u> : ${}^{31}P$ NMR (CDCl₃) : δ 178.8 ppm, ${}^{1}J({}^{31}P-{}^{183}W)=280.8$ Hz ; ${}^{1}H$ NMR (CDCl₃) : δ 7.4 (m, ${}^{4}J(H_{4}-P)$
 - $\sim {}^{3}J(H_{4}-H_{5}) \sim {}^{3}J(H_{4}-H_{3}) \sim 8.5 \text{ Hz}, {}^{4}J(H_{4}-H_{6})=1.5 \text{ Hz}, 1H, H_{4}), 7.7 (m, {}^{3}J(H_{5}-P)=23.5 \text{ Hz}, {}^{4}J(H_{4}-H_{6})=1.5 \text{ Hz}, 1H, H_{4}), 7.7 (m, {}^{3}J(H_{5}-P)=23.5 \text{ Hz}, {}^{4}J(H_{4}-H_{6})=1.5 \text{ Hz}, 1H, H_{4}), 7.7 (m, {}^{3}J(H_{5}-P)=23.5 \text{ Hz}, {}^{4}J(H_{4}-H_{6})=1.5 \text{ Hz}, 1H, H_{4}), 7.7 (m, {}^{3}J(H_{5}-P)=23.5 \text{ Hz}, {}^{4}J(H_{4}-H_{6})=1.5 \text{ Hz}, 1H, H_{4}), 7.7 (m, {}^{3}J(H_{5}-P)=23.5 \text{ Hz}, {}^{4}J(H_{4}-H_{6})=1.5 \text{ Hz}, 1H, H_{4}), 7.7 (m, {}^{3}J(H_{5}-P)=23.5 \text{ Hz}, {}^{4}J(H_{5}-P)=23.5 \text{ Hz}, {}^{4}J(H_{5}-P)$ $H_5-H_6)=9.7$ Hz, ${}^{3}J(H_5-H_4)=8.5$ Hz, ${}^{4}J(H_5-H_3)=1.2$ Hz, 1H, $H_5)$, 8.0 (dd, ${}^{3}J(H_3-P)=12.2$ Hz, ${}^{3}J(H_{3}-H_{4})=8.5 \text{ Hz}, {}^{4}J(H_{3}-H_{5})=1.2 \text{ Hz}, 1H, H_{3}), 8.4 (ddd, {}^{2}J(H_{6}-P)=26.7 \text{ Hz}, {}^{3}J(H_{6}-H_{5})=9.7 \text{ Hz},$ ${}^{4}_{J(H_{6}-H_{4})=1.5 \text{ Hz}, 1H, H_{6})}$; ${}^{13}_{C}$ NMR (CDCl₃) : δ 128.0 (d, ${}^{1}_{J(C-P)=25.4 \text{ Hz}, C_{6})}$, 135.4 (d, ${}^{2}_{J(C-P)=17.5 \text{ Hz}, C_{5})}$, 137.0 (d, ${}^{3}_{J(C-P)=8.9 \text{ Hz}, C_{4})}$, 151.4 (d, ${}^{2}_{J(C-P)=18.1 \text{ Hz}, C_{3})}$, 158.4 (d, ${}^{1}J(C-P)=21.6$ Hz, $C_{2}-C1$), 193.7 (d, ${}^{2}J(C-P)=9.2$ Hz, CO cis), 198 (d, ${}^{2}J(C-P)=33.4$ Hz, CO trans) ppm ; I.R. (pentane) : γ (CO) 2080, 1980, 1960 cm⁻¹.
- 12. $5: {}^{31}P$ NMR (CDCl₃) : δ 179.8 ppm ; ${}^{1}H$ NMR (CDCl₃) : δ 2.35 (d, ${}^{4}J(H-P)=3.8$ Hz, 3H, CH₃), 2.39 (s, 3H, CH₃), 7.71 (d, ${}^{3}J(H-P)=3.5$ Hz, 1H, H_{3}), 8.31 (d, ${}^{2}J(H-P)=39.7$ Hz, 1H, H_{6}); ${}^{13}C$ NMR (CDC1₃): δ 22 (s, CH₃), 22.5 (d, ³J(C-P)=3 Hz, CH₃), 137.4 (d, ²J(C-P)=12.6 Hz, C₃), 141.1 (d, ${}^{3}J(C-P)=15.1$ Hz, C_{4}), 141.1 (d, ${}^{2}J(C-P)=15.6$ Hz, C_{5}), 155.7 (d, ${}^{1}J(C-P)=50.8$ Hz, C₆), 161.2 (d, ${}^{1}J(C-P)=54.3$ Hz, C₂-Cl) ppm.
 - <u>7</u>: 31 P NMR (CDCl₃): δ 159.3 ppm, 1 J(31 P- 183 W)=278.3 Hz; 1 H NMR (CDCl₃): δ 2.36 (d, 4 J(H-P)= 6.4 Hz, 3H, CH₃), 2.4 (d, ⁵J(H-P)=1.4 Hz, 3H, CH₃), 7.86 (d, ³J(H-P)=13.2 Hz, 1H, H₃), 8.1 (d, ${}^{2}J(H-P)=25.9$ Hz, 1H, H₆); ${}^{13}C$ NMR (CDC1₃): δ 22.1 (d, ${}^{4}J(C-P)=3$ Hz, CH₃), 22.9 (d, ${}^{3}J(C-P)=10.3$ Hz, CH₃), 138.9 (d, ${}^{2}J(C-P)=23$ Hz, C₅), 140 (d, ${}^{2}J(C-P)=8.7$ Hz, C₃), 146.0 (d, ${}^{3}J(C-P)=17.9$ Hz, C_{4}), 150.8 (d, ${}^{1}J(C-P)=19.7$ Hz, C_{6}), 155.9 (d, ${}^{1}J(C-P)=25.2$ Hz, C_{2}^{-1} C1), 194.0 (d, 2 J (C-P)=9.3 Hz, CO cis), 198.5 (d, 2 J(C-P)=32.2 Hz, CO trans) ppm ; I.R. (pentane) : γ (CO) 2080, 1980, 1960 cm⁻¹; mass spectrum (E.I., 70 eV, 184 W) : m/z 482 (M, 19%), 426 (M-2CO, 27%), 398 (M-3CO, 4%), 370 (M-4CO, 13%), 342 (M-5CO, 83%). (Received in France 7 December 1988)